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SEARCH: AN INTERACTIVE COMPUTER PROGRAM
PY FOR OPTIMIZING TWO-VARIABLE, UNCONSTRAINED
EXPERIMENTS OR SIMULATION
o I. Introduction
General Background
Py In science, industry, military operations, business and
most facets of life, countless effort 1s spent trying to
improve “production® and maximize one's output. For some
G examples, in chemistry, what amount of chemical A mixed with
chemical B produces the largest amount of product C. In
military operations, how many and of what type weapon should
® attack which targets to optimize the damage expectancy. In
businegs, how many of a certain item type should be ordered
to minimize storage while maximizing sales. Or, 1n one's
® personal finance, what amount should be paid on certain
debts and what amounts should be invested in which tvpe of
savings to maximize one’'s wealth. So, whether 1t 1s the
. right amount of an 1nput that produces the best output or
-
the correct number of inputs to provide the best results,
optimization is a problem dealt with almost daily. Hill:ier
< and Lieberman point out, “this 'search for optimality' 1s a
very 1mportant theme :1n operations research’ (3:5).
Operations research covers a broad spectrum of
) optimization programming. At one end lies the well
i
)
.
I - 1
R A R ATy AT e

SRAAY

ALV VR L SCRERARAARN \a“:x‘:a
> '*?%hﬁﬁﬂ. ;




L an o e o 4

P e auid on o e e o

a2 A e S~ g

i

s

LK}

developed linear programming with its maximization of a

linear objective function and restrictions by linear
constraints. Going down the spectrum in limitations, one
finds the lesser developed non-linear programs such asg
quadratic, geometric, and fractional programming. These
algorithms still optimize an objective function, but the
restrictions of linearity are relaxed. Still further down
this restrictive ladder, one comes to direct search methods.
Here, optimization of the problem is still the goal, but the
formula of the objective function is unknown. Direct search
techniques use experiments (trial and error) to gain
information about the optimum. Thia method involves either
experimenting with the real system itself or experimenting
with a simulation model of the system. This search category
includes techniques such as exhaustive search, random
search, and direct search.
Wilde clarifies this category of problems as follows:
The search problem 1s to find, after onlv a few
experiments, a set of operating conditions yielding a
value of the criterion y which 1s close to the best
attainable. From another point of view, the problem 1s
to reach a specified minimum acceptable level of
performance in as few trials as possible.
Geometrically speaking, we would like to climb up the
r«sponse surface as quickly as possible, even though

the only i1nformation we have about the surface comes
from the past experiments we have run [(9:64].

New and better search techniques are evolving as the

regsearch for more efficient methods 1s continued. The
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thrust of this study and criterion of effectiveness of
methods is efficiency in reaching the optimum. More
efficient is defined as requiring fewer experiments to reach
the vicinity of the optimum. Thus, better, more efficient
methods arrive at the optimum using fewer experiments or
Simulations.

The simplest, and probably first, search technigque used
was the exhaustive search, or mere enumeration. This
technique 1nvclves looking at all possible combinations of

tnput variables and selecting the combination giving rhe

highest output. This accurate method probably saw a short
rebirth with the advancements of computers. The exhaustive
method works f{ine for small problems; however, even with

computers, a more efficient method 18 needed to save time
and cost.

Since with exhaustive search 1t might often times be
prohibitive, random search might be used. This 1nvolves
randomly selecting i1nput combinations for testing. The
problem with random search 1S never knowing when the optimum
has been reached unless all points are tested. If only a
few experiments are possible, random search might be
considered the best choice for a large problem.

From the need for a more scientific method, the direct
search me*hods were develnoped. Direct search i1s a planned.
mathematical search that leads one to the optimum. Over the

last thirty years there have been numerous direct search
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plans developed. Search plans basically fall into two
categories: gsimultaneous and sequential. Plans specifying
the location of every experiment before any results are
known are called simultaneous, while a plan permitting the
experimenter to base future experiments on past outcomes are
called sequential (8:5). Simultaneous search plans, usually
called experimental designs, have been developed that
systematically test points 1n a specified region of
interest. Response surface methodology (RSM) takes the
experimental design and calculates an estimated equation of
the real system from which an expected optimum can be
derived mathematically. Numerous sequential search
algori1thms have also been developed. These algorithms
generally entail the use of gradients, directional line

searches, geometry, and sometimes curve fitting.

Problem Statement

Frequently, engineers are given problems to solve 1n
which they want the optimal solution (either maximization or
minimization) and no equations or formulas exist of the
objective function. Thus experimenting (or simulating)
provides the only clues for the location of *the optimum.

There 1s a need for a computer software program that
guldes a person to the optimum whether maximum or minimum
when only s1mulation or experimentation is available. It

should combine various efficient direct search techniques 1n
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an algorithm to expedite the search. It should employ
simple techniques that a practicing engineer should
understand. It's goal should be to minimize the number of
experimental tests (simulations) required. Basically, 1t

should be simple for the user to i1mplement and use.

Research QObaectives

The overall objective of this research is to develop an
interactive, user-friendly computer package which allows one
to find the optimal response to experimental test or
simulation models. The program will contain the most
efficient search techniques. The program will quickly solve
for the optimum for quadratic surfaces and many higher order
equations.

Subobjectives of this research effort are as follows:

(1) The efficiency of different techniques during
different phases of the program compared in order to select
the most efficient techniques for the program. The measure
of effectiveness for efficiency being the least experimental

tri1als needed for the required accuracy.

(2) A verification of the computer program
accomplished showing that 1t does solve optimization
problems. This would entai1l taking various problems and
checking to see 1f the program can find the optimal

solution.
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Scope

The limitations of this research are:

(1) The independent (input) variables are limited to

two and they are continuous real variables.

(2) There 18 a single dependent (output) variable from

the model considered in the program.

(3) The only experimental designs used are a 2-K
factorial for first-order equation fit and a 3-K factorial

for second-order equation fit.

(4) Experimental error 1s mainly handled by repeating
the simulation test and then averaging the results. The

number of repetitionsg are at the discretion of the user.

(8) The validation of the user friendliness of the
program is accomplished by having a fellow student run the

program unaided to solve a problem.

sSummary

This chapter briefly discussed the general background,
problem statement, research objectives, and scope pertaining
to thig research. The next chapter will discuss the

literature and methodology pertinent to this research

effort.
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II. Literature And Methodology

In the past, the practical method known for handling
optimization problems was the classical differential
calculus. However, the classical method is impossible to
use when the objective function is undefined. Therefore, an
indirect method of finding the optimum using trial and error
must be used. Wilde gives the name “optimum seeking
procedures” to the strategies guiding search for the optimum
of any function about which full knowledge 1s not available

(9:vi1i1) .

Plan Of Attack

The only way to gain information about an unknown
function 1s by direct measurement, 1n other words
experimentation (5:vi11). In this optimum seeking method,
each experiment has two purposes, not only to attain a good
response surface value, but also to give 1nformation useful
for locating future experiments where desirable values of
the response surface are likely to be found. Thus,
throughout the search one must continually be deciding to
climb or to explore. At the beginning, when nothing at all
is known about the function, one must explore 1n some small
region, usually chosen as a best guess, so that one might
place the following experiments 1n an uphill]l direction. In

the middle of the search, after having explored some region,

o
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one tries to climb as fast as possible, exploring only when

strictly necessary to guide the successive steps. Toward
the end of the search, when one 1s finally near the top,
extengsive exploration may be needed to attain any increase
in elevation, the slope of the response surface often being
slight near the optimum (9:64) .

An analogy to this plan of attack might be like a blind
man climbing to the top (highest point) of a mountain. At
the bottom of the mountain, he probes around with his cane
to find the steepest uphill slope. After this 1nitial
exploring, he proceeds 1n this uphill direction until he
reaches a point where he starts to go downhill. At this
point he probes around this area for a new uphi1ll direction
and proceeds uphill again. This continues until he reaches
the top and can find no new uphill direction. At this time,
he explores extensively around the top to find the upmost
highest point. The direct search method is similar to this
blind man’'s search 1n that one cannot see where one 1s
going, but only by probing with experiments, like searching
with a cane, can one get the direction to the optimum.

The three phases of the attack plan will now be
discussed separately. The beginning exploratory phase %o
find the uphill direction will be called the gradient phase.
The middle climbing phase will be called the acceleration
phase. The final phase exploring the top will be called the

second-order exploratory phase
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Gradient Phase

In this phase of the search, one 1s exploring for the
uphill gradient (slope) of the response surface from the
initial starting point. As mentioned earlier, 1f the
function ig known, derivatives could be taken at this point
to find the gradient. Since 1t 1s unknown, another way must
be determined to attain the gradient. Note--This 1s one of
the main differences between some non-linear programs and
these direct search techniques.

Wilde proposes one method of obtaining the general
slope of the response surface 1n the neighborhood of the
initi1al point. First, find the gradient i1n the xl-direction
parallel to the x]1 axis. To do this, one varies the x|
value slightly while holding the x2 coordinate at x20 :!*the
tniti1al x2 value) allowing just enough distance between xl11

and x10 (the 1nitial xl1 value) to make the outcome vyl

distinguishable from y0 (the 1nitial y response va.ue!

-9
o g
4]

strai1ght line through the points y0 and yl lies entire.yv in
the plane of the x20 value and 1s approxi:mately *“angen*® °:
the response surface at yoO. The gslope of thig line 15 given
by yl-y0/xll-x10. Now, a similar exploratory experimen® .s
done, but this time varying the x2 coordinate and holding
the x! coordinate constant at xl10. The straight line
passing through y2 and yO lies entirely 1n the plane of x10

and the slope of this line 1s given by y2-v0/x22-x20. The
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three points y0, yl, and y2 on the response surface are

& enough to determine the plane approximately tangent to the
surface at yoO. An equation of this plane would be of the
form y= bO+blxl+b2x2 (9:65-68). From the above, one can

e deduce the direction to proceed from the 1nitial point 18 on

a vector that goes y2-y0 in the x2 direction while going yl-
y0 1n the xl direcuv.oun. Thus, with only two experiments an

@ approximate direction to start the climb 1s found.

Another exploratory search method which uses from two

to four experiments 1s given by R. Hooke and T . A. Jeeves.

o™ This method 18 similar to the previous Wilde method, but 1is
more sequential. The gradient :1s obtained as fcllows: After
the 1niti1al point (x10,x20) 1s evaluated for y0. x10 13

™ ~hanged by an i1ncremental amount, +rf, so that xll=x10+rf¢
If the y response 1s an 1mprovement over y0O. then xll :s
adopted as the new coordinate 1n the xl direction. It

o x10+*rf fails to 1mprove the response, x10 1s changed by -rf
and the value of the y response again <checked for
improvement . If the value of y 18 not 1mproved bv e:ther

x10 ¢« rf, x10 1s left unchanged After *the x. direc-*ti-n .=z

I

modified, then x20 13 changed by an amount., +rf, and the
above test 1s repeated 1n the x2 directinon %> c-mplete :re
- exploratory search. The successfully changfed variables

define a vector from the 1niti1al point for a direction to d-

an acceleration phase (4:142-148)
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Another method to find the gradient 1s to use a 2-k

'@ factorial design and fi1t a first-order equation to the
response surface using RSM procedures. What are the
advantages of using a factorial design?” Montgomery

P concludes that factorial designs are more efficient than
one-factor-at-a-time experiments. Also, a factorial design

1S necessary when 1nteractions may be present, to avoid

v misleading conclusions. Finally, factorial designs allow
effects of a factor to be estimated at several levels of the
other factor, yielding conclusions that are valid over a
range of experimental conditions (5:192). A 2-k desi1gn
would be like a box drawn around the initial point and the

four corner coordinates of the box would be used to obtain

regponse surface values (that is y values). The si1ze of the
box should be small in order to better approximate the
tangent plane at the initial point, but not so small that no
Y effecti1ve change can be seen. After obtaining the four
responses, one can use RSM to fit an equation of the form,
y=bo+blx1+b2x2+bl2x1x2. A good explanation of the RSM

equation fitting 1s given by Meyers (6:43-50).

€*

The following 1s how a 2-k factorial desi1gn works on
the i1nitial point (x10,x20). Let rf be the distanrce

selected in the x1 and x2 direction for the si1ze of the box.

(Y]

~ e DR e I S I R L T IR T I N TP I I

2, ' uly/;'-l'c‘..l‘)_.ff{'-‘.'c"',f._.’_._n'
_ AR RA LG R S Rt

i e e e M i Ly £ . *

. g A A8




-
The four corners would then be:

v

(xln,x2p,ylh) (xlp,x2p.yhh)
(xln,x2n,yll) (xlp,x2n,yhl)
- where
v
xln=x10-rf
Xx2n=x20-rf
x1p=x10+rf
X2p=x20+rf
v
The first order equation fitting these would have
coefficients:

& BO=(yll+ylh+yhh+yhl) /4 (1
Bl=(yhh+yhl-ylh-yl1l) 4 (2}
B2=(ylh+yhh-yll-yhl)}) /4 13
Bl2=(yll+yhh-ylh-yhl)/4 t4)

* This first-order equation approximates the tangent

plane at yO. Bl provides the gradient 1n the xl direct:ion
and B2 the gradient 1n the x2 direction. However, 1¢f BiZ

v not zero, then there 18 1nteraction and the surface

approximation 18 not a plane but a curved surfare Thus ot

Bl and B2 slopes could be misleading 1f the 1nteraction :s

large.

The last exploratory search for a gradient +: te
examined 1s the 3-k factorial design. This design ‘ises
e1ght exploratory experiments and fits an equati~on tn a
second-order equation. This design provides m-ore

information about the curvature of the response zurface

around the 1ni1tial point. The following 1s a desc-ription

15




the 3-k design. The 3-k desi1gn uses 9 points 1n a symmetric

square pattern.

the 2-k design, the 3-k needs four additional points.

In addition to the four corner points of

(xln.,x2p.,ylh) (x10,x2p,ymh) (x1lp.x2p.yhh)
(x1ln,x20,y1lm) (x10,x%x20,ymm) (x1lp.x20,yhm) '
(xln,x2n.yll) (x10.x2n,yml) (xlp,x2n.yhl) '
Figure 1. Nine Points of 3-K Factorial Design (6:51) AJ
With these nine points, RSM can use this design to f1t

a second-order equation to this response surface.

equation

The coefficients of

BO
Bl
B2
Bll
B22
B12

Similar to the 2-K design, Bl provides the gradient 1n

x] direct

Thus ,

cal~ulate

efficient

1s of the form:

fyll+ylm+t+ylh+yml+ymm+ymh+yhl+yhm+yhh) /9
(yhl+yhm+yhh-yll-ylm-ylh) /6
(ylh+ymh+yhh-yll-yml-yhl) /6
(yll+ylm+ylh+yhl+yhh-2# (yml+ymm+ymh) /6
(yll=yml+yhl+ylh+ymh+yhh-2(ylm=ymm=yhm) /6
(yll=yhh-ylh-yhl)/4

ton and B2 the gradient i1n the x2 direction

the gradient. Which of these 15 the most

for the required purpese?® The ynidimensional

the literature search hasg praovided four ways

The RSM
y=BO+Blx1+Bl1lx1*+B22x2*+B12x1x2.

the equation are computed as follows:

(6}

7

(8)
(9
1O
tlle

*he

* o

and
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Hooke-Jeeves method use the fewer number of experiments;
however, both calculate only one s8lope 1n each direction.
If there 18 the least amount of error in any of the
responses, it would affect the respective slopes greatly.
The 2-k, using just four points, calculates two slopes 1n
each direction and averages the result to get the gradient.
Consequently, 1t would be more capable 1n dealing with any
margin of error. The 3-k calculates three slopes 1n each
direction and averages the result to get the best gradient

for handling noise error, but it needs eight additional

points. It needs four more points than the 2-k, but only
averages | more slope than the 2-k. From this compariscn,
the 2-k desi1gn 18 the best. It will be used in the program

to determine the gradient.

Acceleration Phase
The acceleration phase 1s the actual climbing up the
hill. Again 1t 1s desirable to do this with as few
experiments as possible. Many algorithms have been proposed
on how to accomplish the ascent most effectively

of the algorithms will be discussed, merely those leading up

fad
o}

the algorithm used 1in the program.
To begin with, the 1ni1tial line search can be thrught
nf as an unidimensional search along the gradient vector.

The dilemma 1s how bi1g of a step to take along *he vector.

Orne 1dea 1s to normalize the slopes to get a unit step along
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the vector. One then takes uniform unit steps along the
vector. If the uniform unit step s1ze is too small, 1t will
take numerous steps to reach the peak of the vector.
Likewise, 1f the step 18 too large, the climber might step
way beyond the peak. Thus, the uniform step s1ze 18 not a
very efficient line search and adjusted-step line searches
have been proposed as an improvement.

Robbins-Monro method was one of the first and simplest
improvements over uniform step. It 1s based on the harmonic
sequence 1,1/72,1/73,1/74, etc. times the magnitude of the
dependent variable. The harmonic sequence 1s divergent and
the sum of all 1ts terms is infinite. Therefore, 1t
guarantees the procedure will eventually reach the peak. no
matter how far away 1t started (9:162-167). The problem
with this line search 1s the exorbitant number of
expertirents necessary to find the peak, especially 1f one
starts 1n a fairly flat region far from the optimum.

Keston has deviged a procedure which accelerates the

search more quickly. Instead of starting with the

o8

erreasing harmonic sequence, Keston's method starts with a
uniform step then shortens the step size harmonically when
the peak 1s crossed and the direction of search reverses

Table I compares the two methods.
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~i. Table I Unaccelerated and Accelerated Peak-Seeking Methods
-, steps 2 3 4 5 6 7 8 total
o direction + + - - + - + |

s
[
.
2

1
+
unacceler 1 172 173 1/4 1/95 /76 177 1/8 1 149/280
accelerate 1 1 1l 172 172 173 174 1/5 2 17/60

¢
—

/

,: (9:180)
"

S

o
a* As with Robbins-Monro, the Keston method i1nsures one of
}: finding the peak and 1t achieves results more rapidly.

’-

}5 However, 1t sti1ll takes numerous experiments along the
::&

® vector to find the peak of the vector.
\:} An 1mprovement over the Keston 1s the golden section

- search. It uses a large step s1ze to cross over the peak.

-
{ \d Once the peak 18 crossed an i1nterval exists wherein the peak
o

CN 13 located. The golden search technigque can now be used *»
"
.f; reduce the 1nterval of uncertainty. Golden search splits

N
Y “he 1nterval with the peak 1nto two segments such that +he
j; rati1o of the whole interval to the larger segment 1s *+the
.;: same as the ratio of the larger segment to the smaller.

() The golden search plan works as follows: Let +he
0

:z 1nitial i1nterval that brackets the peak be called 4 with

:{ erndpoints of zl1 and z2. Next, place 2 experiments :i1nside
Y.

® this 1nterval z3 and z4 such that z3:=z1+0 38#d and

.

nf z4=21+0 .62+=d. I[f the y response of 23 1s larger than that
;

o for 24, the interval of wuncertainty 1s from zl to z4.

LS

® Otherwise, 1f the y-response of z4 15 larger than z3, the

i

~

7

l"

4
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new 1nterval 18 from z3 to z2. This procedure 1s then
continued for the new 1nterval of uncertainty. Golden
search will reduce the 1nitial length of the i1interval of
uncertainty by (0.618)""! where n 1s the number of
experiments used. For example, 1f eleven experiments were
used, the new 1nterval would be 0.008 the si1ze of the
ori1ginal i1nterval (4:42-43). In addition. Himmelblau
recommends a sequential series of larger and larger steps
along the vector to expedite the 1nitial bracketing of the
peak. The golden search is quite efficient compared to the
previous methods and other interval uncertainty methods.
Wilde provides an excellent comparison of golden secticon to
other interval methods (9:28:29). However, there 1s a
method of fitting a polynomial to the points that 1s even
more efficient than golden search.

The last unidimensional line search that 1s examined,
and the one used 1n this computer program, 1s the Davies,
Swann, and Campey (DSC)-Powell Search. This method 1nvnlves
bracketing the peak (DSC portion) and the fitting of a
quadrat:c equation (Powell portion) to i1nterpolate an
estimate of the peak. G.F. Coggins shows that th.s
technique 1nvolving the fitting of a second-order polvnom:ial
through selected points was better at locating the peak to
within a specified precision than the 1nterval methods such

as golden section (4:44) .
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The Davies, Swann, and Campey (DSC) portion 1s used to

> bracket the peak. It involves doubling the step si1ze for
each step until the peak is overshot. After the peak is
overshot, the direction 1s reversed and previous i1nterval
> used i1s reduced by one-half. This 1s used to obtain one
more point. This procedure will give four equally spaced
points. The two middle points y-values are compared for
£ optimum. The point with the optimum y-value plus the two
points used for fitting the quadratic since the peak should
be inside this :nterval. See figure 2 below.
)
. |
! |
\ !
| AL LN 1
v . |
\ ] |
i :
| |
- | o |
i 2 3 5 t X |
| J
*
Figure 2. Davies, Swann, and Campey Technique
Powell's equation carries out a quadratic approximation
N using the three points. The optimum (critical point) 1s
found by taking the first derivative of the equation.
Powell's equation (4:46) 1s as follows:
XxT=- 50 (%2%-x3%) L1+ (X33-X13) 2+ (x1¥-x2°)t3]
(X2-x3) 1+ (x3-x1)t2+(x1-%x2)t3 (12




The equation used in the computer program i1s of a

slightly different form. The derivation of the computer
equation 18 as follows:

Let pl, p2, and p3 be the three points and tl1, t2, and
t3 be their respective y-value. Let ¢ be the equal distance
between the points. The quadratic equation to be fitted 1:
of the form y=bo+blx+b2x* with derivative dy/dx=2bx+bi=0
implying the optimum of the equation 1s x=-bl/2b2
Putting the three points 1i1nto the equation and solvinsg

simultaneously one gets

bO+blpl+b2pl==tl t13)
bO+blp2+b2p22%=t2 (14
bO+blp3+b2p3==t3 (15
note: pl=pl P2=pl+c p3=pl+2c
by matrix notation,
b0 bl b2
- pl pl= tl
r—l pl+c (pl+c) = tQ—W
L pl+2c (pl+2c) 13—
—1 pl pl= t1
| © c 2cpl+c= t2-t1
—0 2c 4cpl+4c? t3-t1—
—1 0 -plipl+c) (ctl-pit2epiti v —
L0 1 2pl+c (t2-t1)/c
—0 0 2¢* t1-2t2+43 —
note: let, d=t1-2t2+t3 and e=-3ctl+d4ctl-ct3
—1 0 0 (ple«d+plre+?2cdt]) Do —
| o 1 0 (-2pledre). 2n°
L—‘O 0 1 A/ 2m= __
x® = -(-2pl*d+e)/2c* (18
2(d/72¢c2)

x* = pl-.5(e/d) t17)
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This final equation 1s used 1n the computer program.
It looks quite different from Powell’'s equation. However
1f x2 and x3 are substituted by xl+c and xl+t2c,
respectively, then Powell's equation reduces to the one
above. As mentioned earlier, the DSC-Powell method 1s the
line search selected for the program. This selection 18 due
to 1ts quickness 1n finding the peak and 1ts accuracy.

After finding this first point (pl) from the 1initial

point (p0), one can repeat the gradient phase around pl to
find a new direction to proceed. The line search (DSC-
Powell) 1s again employed to find the next point (p2). A

repetition of gradient and line searches can be continued
until the optimum 1s reached. This 1ntuitively attractive
tdea of climbing the steepest path 1s known as the gradient
method, or the method of a steepest ascent (9:107). The
advantages of the steepest ascent method are: (1) It tends
naturally to avoid saddlepoints,and (2) It will eventually
converge for any unimodal function, even when there 1s
appreciable experimental error (9:120-121). The steepest
ascent method 15 one of the two algorithms of the ~omputer
program. In the program, 1t 1s called the gradien%t/line
method.

An algori1thm that accelerates faster than steepest

ascent 1s the parallel tangent (PARTAN) method. There are

several variants of the PARTAN method. The variant used is
the "steepest ascent PARTAN". This method 1s also often
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referred to as "gradient PARTAN°. The PARTAN method 1s just

like steepest ascent 1n finding the first two points pO.and
pl. After finding pl, the PARTAN method eliminates the
experimental design around pl for the next direction. The
gradient to be used at pl is the gradient perpendicular to
the gradient of pO. This direction will form a plane that
18 parallel to the contour tangent plane of p0O, where the
name PARallel TANgent (abbreviated PARTAN) comes from. The
perpendicular gradient can be found easily by swapp:ing the
previous slopes and reversing the si1gn of one of them. That
1s, 1f bl and b2 were the slopes at p0O, then now at pl the
slopes are bl=-b2 and b2=bl. A line search is then
accomplished along this plane to find the peak, which 1s
point p2. After finding p2, PARTAN eliminates another
experimental design around p2 for the next direction.
Instead of the 2-k factorial desi1gn, 1t connects a line from
p0 through p2 for a new gradient direction. A line search
1s then accomplished starting at p2 and going along this
vector direction to find p3. P3 1s the optimum or very
close to 1t. When the response surface contours are
concentric ellipsoirds, PARTAN will locate the optimum
exactly after no more than 2k-1 unidimensional line =searches
(where k 1s the number of independent variables) (9:124)
This means that point p3 (mentioned above) will he the exact
optimum for a 2 i1ndependent variable deterministic problem.

Thus, after osne 1initi1al gradient search (4 experiments) and
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three line searches (about 5 experiments each), PARTAN

locates the optimum. Whereas the gradient/line uses two
gradient searches (4 experiments each and two line searches
(about 5 experiments each) per zigzag. Therefore, one can
conclude the PARTAN algorithm 1s i1ndeed a more efficient
method for certain quadratic problems.

Even when the contours are not precisely elliptical,
PARTAN has certain ridge following properties which make 1t
attractive especially when the ridges are strai1ght (10:323).
In addition, PARTAN will work perfectly 1in two dimensions
for any radially similar contours since the property of
parallel tangents works for these (9:144). Even for other
non-ellipsoitdal surfaces, PARTAN can sti1ll work. It 1s just
that PARTAN will generally not be ri:ght at the optimum after
one cycle, but this does not prevent starting over again
using point p3 as the beginning of another PARTAN search.

The geometric reason PARTAN works (finds the top of the
hill with so few line searches) can be s1mply explained
usi1ng a contour plot of the response surface. See figure 3.
Let a point p0 be randomly selected and a line be drawn from
p0O to the center of the ellipse, p3. One will notice that

this line pOp3 i1ntersects each contour ring at the same

angle. Next, the contour tangent planes, t(1)s, are 4drawn
at the point of each of these 1ntersecticns. Cne will
observe the planes are all parallel. Also. the point of

intersection with the contour ring 1s the

[»]

ptimum polnt
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along the plane line for each tangent plane. Next, the
gradient vector g at p0 1s perpendicular to the contour
tangent plane, t0, at poO. Thus, perpendicular to all the
other contour tangent planes drawn.

The PARTAN method described above would follow the

darkened path in figure 3. Starting at pC, PARTAN

calculates the gradient vector g. It goes along this wvector
to the vector peak, pl. It then moves on a vector
perpendicular to g at pl to the vector peak. p2. It

connects p0 to p2 and follows this vectcr to 1ts peak, 2.

This described method will be called the PARTAN/line method

for the rest of this paper and 1n the computer program.
There 1s sti1ll another 1mprovement to the search

method. Faix proposes an efficient :mprovement

Jai
o
D
3
nd
o>
[\ ]

PARTAN/line method. Faix states,

The method only works exactly for perfect
quadratic response surfaces with no noise. However, 1t
will be shown to be relatively robust against many
types of 1mperfection, and thus a good methodology
choice [1:1801].

This 1mprovement, to be called the PARTAN/FAIX method,

eliminates the line search from p2 to p3. The PARTAN'FAIX
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2
! method calculates the distance from p2?2 to p3 by using the
:. results from points pO, pl, and p2 to find the eccentricity
. of the ellipse. The eccentricity, e, measures the stretch
of the ellipse. The eccentricilty of an ellipse 18 equal to
c/a 1n figure 4 and ranges from O to almost 1.
-

—

e N \J. - 2 [

tdor)

- Figure 4. Eccentricity of an Ellipse

The eccentricity 1s zero for a circle and approaches one as

the major diameter 1ncreases in ratio to the minor diameter

w (10:379-399) . For a quadratic equation,
ﬁ y=bo+blx1+b2x2+blix1*+b22x2° , one can relate the
ﬁ coefficients, bll and b22, to e. The square root of
: - (b22/bll) 1s equal to the a’/b 1n figure 4. Therefcre, 1f

b22 1s greater than bll, then e 1s equal to the square root
of (1-bl1/b22) and 1f bll 15 greater than b22, then e 1s
equal to the square roct of (b22/bll-1). In Agreement with

>, Faix's notation, b22/bll will be called the variable c

(1:186) .




The variable ¢ can be found geometrically using the

points pQ., pl, and p2 of a PARTAN search. Using figure 7

@
c=(l+mo%r)/ (mo#r-(mo) *%2) (18)
where
&
mo= r4/r5, the known slope of line r3 between p0O an p?3
= rl/r2, the ratio of lines rl and r2
rl= the distance between p0 and pl
r2= the distance between pl and p2
r3= the distance between p0 and p?2
® r4= the distance x22-x20
r5= the distance x12-x10 (1:182)
Usi1ng the variables c, mo, and r3, Faix derives the
'; length of the acceleration step between p2 and p3 1n
multiples of r3. The length between p2 and p3 equal r3®*assu
where (1:182)
L . - -
assu=((mo)~%(c-1)“%#cl/(1l+{(c#*mo)=]2 (19)
There 1s an equally efficient method to the PARTAN/FAIX
Y method. ©One may notice that instead of using the parallel
plane, t3. any of the other parallel planes would have
worked for PARTAN. Thus, i1nstead of doing a line search
. from p0O to find pl, choose any distance to place pl from pO.
A uni1t step of | 1s offered as an option in the computer
program. Then do a line search perpendicular to find p2.
‘n Connect p0 and p2 and do a line search in this direction to
by
; find p3. This would entail just two line searches
s comparable to the PARTAN/FAIX method.
’.
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Second-Order Exploratory Phase

Both the begi:nning and the end of a search :1nvoive
local exploration. The beginning being a simple linear
study near an arbilitrary point to get to the gradient
direction. At the end of the search. a nonlinear
exploration 1n the vicinity of the optimum 1s accompl:shed
to 1nsure the optimum was found (9:75) . This end
exploration may actually find a point nearby that 1s better
then the optimum found by the algorithm. This could be
caused by error 1n the simulation or testing process. In
addition, this final exploratory phase will show the
behavior of the response surface near the optimum.

A 3-k factorial design 1s used to provide the seccnd-
order equation f1it. This desi1gn was discussed under the
gradient phase. The di1fference now 1s once the coefficients
are found, they are fitted i1nto a derived equation for the

critical point.

x1f=x10+[(-b2#bl12)+(2#bll*bl) ]/ [ (bl2%bl2)-(4%bll*xb22)) (20)

x2f=x20+[(-bl#*bl2)+(2%b1l1x%b2)1/[(bl2xbl2)-(4%#bl1lxb22) ] (211

If (4%b]l1%b22) 1s less than (t12%bl1l2) , then this
point 1s a saddle point. Otherwige, 1f bll 1s less than 0
and b22 18 less than O, then the point 1s a maximum. If bll
and b22 are positive, then the point 1s minimum. Thus, the

coefficlients bll and b22 describe the shape of the response

surface around the optimum.
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Summary

This chapter reviewed the literature and methodology
that lead up to the writing of the computer program. The
next chapter describes the actual computer program and how

1t works.
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II1. Program Description

This chapter describes the flow of the computer

program The complete program 1s contained 1n Appendix A.

The program 1s written i1n FORTRAN on a VAX computer but

could be

transferred tc a microcomputer for further use
Before running the program, the subrout:ine SIM must be
modified 1n two ways:
1) Line 18 of the subroutine must reflect whether the

min:mization 2r maximizatlion. This 18 daone tv

letter - 1n the first ~<clumn of line 18 for a

min:mization and ensuring the letter ¢ 18 1n place for a

maxim.zation The .etter - comments out line |8 for a

maxim:_-atlon problem.

The problem simulation must be loaded i1ntc the SIM

subroutine starting at line 14. If the simulation or
experimentation :s *t<c te run externally of the program,
column 1 1n line (4 gets a letter = added and column ! 1n

,A
N
3
i+l
0]

remaoved .

Main Program

The main program :1s Talled YEARCH A fl-w dragram -
SEARCH 135 shown 1n figure S The prcegram has rumer~ 'z
N + + ~ T ~ * . . ' - + h o .
interactive options for the ser Al W e izer the

freedom to work a variety of pr-t.ems However *he program
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1s mainly desi1gned to efficiently optimize quadratic
problems.

SEARCH consi1sts of repetitions of asking the user to
make a choice and then calling the subsequent subroutines
and showing the outcome for that choice. This allows the
program to step along from point to point toward the
optimum.

The program begins by asking the user for the point O
xl and x2 starting coordinates. It then calls the
subroutine SIM, which gives the y response for these 1nputs
and the main program writes these values to the screen and
output file. At this point, 1t automatically calls the
subroutine TWOK. TWOK does a 2-k factorial desi:gn and RSM
fit to find the gradient directions. If the linear equation
1s of a flat surface, thus having no gradients. the main
program will end for there is no direction to climb at this
point. Otherwise, the main program will write to the screen
and the output fi1le, the normalized gradient directions.
This gradient direction 1s the best direction for climbing.

Next the main program will prompt the user for how far
to travel 1n this gradient direction. The two options are:
one unit step or to the peak in that direction. The first
option should be used only 1f the response surface 1s
ellipsoi1dal. The second choice might be used with FARTAN ~r

the steepest ascent method. With the choice made, the
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program will calculate point 1| and write the location of
point | to the screen and output file.

Prcceeding from point 1, the main program calculates
the gradient perpendicular to the last gradient direction
and writes 1t to the screen and output file. It then calls
subroutine LINE to find the peak along that gradient line.
After calling SIM, 1t writes the calculated point 2 to the
screen and output file.

At point 2, the user decides to use the PARTAN method
or continue the gradient/line method. If option 1 (gradient

/line} 1s selected, then the perpendicular gradient 1s

calculated and written. The program calls subroutine LINE
to find the peak in this direction. This 1s followed tv the
subroutine SIM. The grad/line point 3 1s then written to
the screen and ocutput file. If option 2 (PARTAN) s

selected, then the subroutine PARTAN 1s called %5 ca.culate
the gradients. These two gradients are written to the
screen. With the PARTAN directions, the program offers <he
user the option of doing a line search or a FAIX 1ump to *he
next point. If a one uni1t step was selected at point 0O,
then a line search must be selected. Otherwise, the second
option (FAIX method) 1s the most efficient and, 1f seiected,
the main program calls the subroutine FAIX to compute the
PARTAN/FAIX point 3.

Next, the main program offers the user to ~honse which

of the previous three options he wants to use for point 3.
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This 1s 1ncluded 1n case more than one option was selected.

Point 3 1s then written to the screen and the output file.
Finally, the main program asks the user 1f he wants to
ex1t at th:s point, repeat the whole process again using
point 3 as the new 1nitial point, or to do a 3-k factorial
desi1gn and RSM to better locate the final point. If the
user 1s confident the surface 18 ellipsoidal and there was
little error 1n the i1nput values, then one should be at the
optimum and exiting 1s the correct choice. If the user 1s
sure the optimum has not yet been reached, maybe due to the
complexity of the surface, then repeating the process again
would produce the better answer. If the user feels close to

the optimum, but point 3 1s slightly off, then 3-k des:izn

with RSM will help to find the final optimum.
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Input starting call s1m to call TWOK to
® point(x10,x20) get yoO get gradients l
1f 3=1
|
|
1f o+l
< !calculate point 1 l
| ll unit step i
| call line |
| to find peak
l on vector i
l [ |
o } lcall s1m to |
| get v1 |
i L
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! ! [ |
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{ ! calculate call line to call sim to|
b ! perpendicular find peak on get y2 1 |
' 1 gradient the vector T ‘
i 8 J —_ ;
1f kt2 ‘ ‘
i
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ﬁj
| \
‘. E fcalculate L i
' perpendicular [call partan
; jgradient J to get
' ‘r— gradient
, | ;
o ; { 1f 142 1f 141 i
I -

[ i L '
| icall line to call line to call faix |
| find peak on find peak on to find [

lvector vector point | |

L . - l

' |
b ilf m=3 1f m=2 1{f m=1 ]
H ! |
! L————————Jcall sim to
1 get v3

| [ |
f ‘
* call W r' .

rsm r———{ ex1t

|
—

e =

Figure 5. Flow Diagram of Main Program
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TWOK Subroutine

This subroutine fits a 2-k factorial design around a
point and uses RSM to fix an equation to the four points.
The coefficients of the equation are used for the gradients.
Figure 6 18 the flow diagram for the TWOK subroutine. The
subroutine begins by stating the radius of the 2-k factcrial
desi1gn and asking the user 1f he would like to change the
radius si1ze. After the radius size is determined. the
coordinates of the four corner points are calculated. With

these coordinates, the subroutine SIM 1s called and the

response values found. Next., the maximum y-value c¢f the
four points 1s called the variable, m. This vari1able ;s
compared to the initial point response, yoO. If vO 1s larger

than m, then there appears to be no uphill direction from
the 1nitial point. Therefore, the subroutine RSM 1s called
for an exploratory search of the optimum within this area.
Otherwise, the four y-responses are used to calculate the
coefficients of the first-order equation. Of these four
coefficients b0, bl, b2, and bl2, bl and b2 are used as the
x1 slope and x2 slope, respectively. If both of these
values are zero, then there 1s no slope 1n this area ard *the
program will print "Try a new starting point. °~ and end
Before bl and b2 are passed back to the main program. “he

subroutine normalizes their value. The control then returns

to the main program.
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1f =1 (——
> start change the call sim
radius size ]
|
|
1f o+l |
!
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l [ 1
* | 1 lat |
b calculate =
| — | |
| end coefficirentc {
I T |
1f bl=0 and b2=0 |
1 |
- | |
| end |
normalize ,
I gradients ]
}
. |
! (
return to
main |
|
|
¢ j
Figure 6. Flow Diagram of TWOK Subroutine
2 LINE Subroutine
This subroutine finds the peak 1n a vector direction
using the DSC-Powell algorithm. Figure 7 1s the flow
. diagram for the LINE subroutine. The subroutine first
calculates a point that 1s 2 units 1n the dgradient direction
from the starting point. After calling SIM to get the y-
‘s response, 1t checks to see 1f the response was an 1ncrease
. ITI 15
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over the 1ni1tial response. If 1t was not an 1ncrease, the

subroutine reverses the gradient direction and calculates a
point 2 units 1n the other direction. It again calls SIM to
get the y-response. If this too was not an 1ncrease, the
program curve fits these three points to find an optimum.

If erther direction had been an i1ncrease response, the
subroutine would double the step si1ze and calculate the next
point. It would continue doubling the step si1ze until 1t
has ei1ther gone 10 steps(to prevent a continuous loop) or
got a response that was a decrease from the previous step.

Once 1t gets a y-response that 1s a decrease. :t cuts the

step si1ze 1n half and reverses the vector direction. This
gives four equally spaced points. The subroutine compares
the 2 middle responses. It uses the point with the larsger

response and the points on both sides of 1t to curve f1it an
equation. The first derivative of *this equation 1s used ‘¢
find the optimum point along the vector. This optimum point

18 then returned %o the main program.
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1hd start calculate ——rcall t
: acceleratinn Lﬁ sim
3 step value |
b
: | |
. 1f y(l1)<y(1-1) ;
. i
) |
| 1f yli)>y(1-1) |
| 1f n=1 1f n=2 !
| ] i
|L+reverse curve f1t 1f 1=10 1 f 1fIO
' directions these 3 !
D | on gradients points | |
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- ! s step size| {
; | —T |
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- | reverse directions . |
- | fit a point between
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: | 5
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! :calculate ! call s1im +——return :
: ! the peak }——‘1 :
lof equation | . ! !
, ! 1 | !
f | |
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" Figure 7. Flow Diagram of LINE Subroutine
! SIM Subrautine
:‘
k. This subroutine ties the zimulation model or user
»
. experimental values with the program. See fi1gure 8 for a
.
. flow dragram for the SIM subroutine. The zubreoutine bedgins
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by asking the user how many repetitions of the problem i1s to

be accomplished at these values. The default 1s |
simulation. It then loops through the simulation or user
input the required number of repetitions. The subroutine

then averages the responses to get one value to pass back to
the program. Also, by enabling line 18 the program can run

minimization problems by doing a negative maximization.

| 1
fstart+——ﬁreads number
e |

of repetitions

L
gets the
y response

averages return
the response

L

Figure 8. Flow Diagram of SIM Subroutine

PARTAN Subroutine

This short subroutine takes the coordinates of point O
and point 2 and calculates the slope between these two
points. This slope 1s then normalized and passed to the

main program to be used as the next gradient direction.
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FAIX Subroutine

This subroutine takes the coordinates of points 0., 1,
and 2 and calculates the distances between these points. It
also calculates the slope between point 0 and point 2. It
then computes the ratio of the distance between p0 and pl
over the distance between pl and p?2. With these values, the
subroutine determines values for the variables ¢ and assu.
Finally, 1t uses assu and the distance between p0 and p2 to
estimate the location of the p3 coordinates. After calling
SIM subroutine to get the y-response for point 3, 1t returns

to the main program.

RSM _Subroutine

This subroutine fits a 3-k factorial desi1gn around a
point and uses RSM to fit a second-order equation to the
nine points. The first derivative of the fitted eguation 18
used to find the critical point 1n this area. The sec~-nd
derivative test 1s then used to determine whether the

~ri1tical point 18 a maximum, minimum, or a saddle point.

Summary
This chapter described the procedures of the SEARCH
program. It looked at the contents of each subroutine

andthe flow of the main program. The next chapter 4discusse

n

how well the program works.
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Iv. Validation of Program

A validation of the program will be accomplished by

taking a known quadratic equation and comparing the SEARCH

program output with the known mathematical values. See
figure 9 for the output file. The equation 1s y = 10-
5(x1l+1)2-15(x2-2)2 . An 1nitial point of (6,9) will be used

to start the program.

The first check :1s of the gradient around the 1nitial
point. The SEARCH program obtains gradients of (-
0.3162278,-0.9486833) . The first derivatives of the
equation are (-10(x+1),-30(x-2)) and at the 1nitial point
(6.9)would yi1eld (-70,-210) as the gradients. If (-70,-210)
18 normalized, one gets exactly the same values as the
SEARCH program obtains. Thus, the TWOK subroutine does
obtain accurate gradients.

The next check 1s of the line search to point 1. The
SEARCH program used four steps to get to point 1. It used
three steps before 1t passed the vector peak and one reversge

tep to evenly space the points. After curve fitting., the

D]

preogram obtained point 1 as (3.5,1.95). This point 1| 1 TQ

unit gradient steps from point O with a y-value of -3% 2203,

To check the accuracy of this line search, one ~an che~k 7 8
and 8.0 uni1t gradient steps. This gi1ves v-values of -95. 156
and -95.124%, respectively Thus. the line search was guite
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accurate 1n selecting the peak value along the gradient

vector.

After pornt 1, the program computes gradients that are
perpendicular to the first set of gradients. One can see by
inspection that the new gradients (-0.949,0.316) are
perpendicular. Thus the calculation 1s correct.

Another line search 1s accomplished after just three
steps to find point 2. The SEARCH program after three steps
finds point 2 as (-0.25,2.75) with a y-value of -1.250020.
Using 3.9 and 4.0 gradient steps to check the accuracy, one
gets y-values of -1.2657 and -1.26336, respectively. Thus
the line search 18 very accurate again.

Next, the program calculates the PARTAN gradient as (-
0.707,-707) . This is the glope between point 2 and point 7
(2.75-9,-.25-6) and are the same values once normalized.

Finally, the FAIX subroutine calculates point 3 as = -
1,2) with a y-response of 10. This can be checked by the

format of the equaticn as the actual optimum. The RICM

m

subroutine 18 also ran, but shows 1t 1s unable to 1mprove
the optimum.

This demonstration by example has shown the accuracy of
the subroutines that make wup the program. The ocutput from
other problems are contained 1n Append:ix B.

The efficiency of the SEARCH program 1s evident by the

few s1mulation runs required The above probiem needed a
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(x1f ,x2f)

Problem: y=10-5(x1l+1)*%2 -15(x2-2) %2
point 0= 6.000000 9.000000 -970.0000 |
5.500000 8.500000 -835.0000
5.500000 9.500000 -1045.000
6.500000 8.500000 -905.0000 ;
6.500000 9.500000 -1115.000 |
bO,bl,b2.bl2 are
-975.0000 -35.00000 -105.0000 0.000Q00CQE+00
slope 1n x1 direction 1s -0.3162278 |
slope 1n x2 direction 1s -0.9486833
5.367545 7.102633 -583.2812 ‘
4.102633 3.307900 -145.8434 L
1.572811 -4.281567 -614.9680 |
2.837723 -0.4868333 -156.4057 !
point 1 = 3.500000 1.500000 -95.00003 :
the new slope for xl1 1s 0.9486833
the new slope for x2 18 -0.3162278 |
5.397367 0.8675440 -213.8684 i
1.602634 2.132455 -24.13168 !
-2.192100 3.397366 -26.39499 |
-0.2947329 2.764911 -1.263333 {
point 2 1s -0.2500001 2.750000 -1.249963 j
partan slopes are -0.7071068 -0.7071068 f
rl.r2,r3,r mo are I
7.905694 3.952848 8.838835 2.000000 1.000000 1
c= 3.000001 ‘
assu= 0.1200000 |
faix point 3 1s -1.000000 2.000000 10.00000 }
point 3 1s -1.000000 2.000000 10.00000
-1.500000 1.500000 4.999996 i
-1.500000 2.000000 8.749999 |
-1.500000 2.500000 5.000003 ;
-1.N0U000 1.500000 6.249997 !
-1.000000 2.000000 10.00000 |
-1.000000 2.500000 6.250004 '
-0 .80N000 . 1.500000 4.999998 i
-0.5000001 2.000000 8.750001 {
S0 B0D0L00 ] 2.500000 5.000005% [
bO.bl.b2 . bll.b22.b12 = |
6.666667 1. 1126200E-06 3.6557515E-06 -1.250000 -3.750000
1.1920929E-07 !
the final point 18 -1.000000 2.000000 1000000

Figure 3

1S a maximum polnt.

Nutput

from Sample Problem

—
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mere twelve simulations to find the optimum plus ei1ght
additional to run the RSM accuracy check at the end.

A comparison of this program to other similar programs
18 not realistic Most other prcgrams are written to solve
complex, nonlinear equations. Reklaitis compares several of
these methods and algorithms., and was unable to determine a

superior method (7:60,120).

Summary
This chapter used an example problem as a vaiidation =3f
the program. It showed the accuracy of the subroutines and

efficiency of the program. The next chapter recommends

further enhancements.




f.

Conclusion and Recommendations

<

The overall objective of this research was to develop

an i1nteractive, user-friendly computer package that allows

- one to locate the optimum response of an unknown objective
' function 1n a minimum number of experimental tr:i:ails

§ Subobirectives were:

Ui
>

2w that the technigques chosen were *he most

) o)

efficient using the least number of trials as the meazure of

L o (2) Veri1fy that the prcgram can find the optimal
response to a sample problem.
This research effort accomplished these cbiectives.
<9 The program 1s user-friendly and solves the
c2ptimrzationproblem 1n a very efficient number of trials
, It, 1n addition, provides the flexibility to scive even more

b » complex problems than )ust quadratic surfaces.

o8
o
D
T
@}

r -

Recommendations for further enhancements wcu

expand the number of 1ndependent variables that the prcoegram

g —~an handle. This would 1ncrease the base of prcblems the

program can solve. Another enhancement wonuld be * 5 enabile
' the program to itncorporate constraintaz. This wanl i rtroaden
O 1ts adaption to real world problems Finallyv., ~ne lag*

N ugser-friendly enhancement would be to add 1+ts own ¢raphic

b display of the response surface.
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Appendix A: Program Listing

program search

integer g,1,) ,k, 1., m

real x10,x20,y0,bl b2 ,rl

real x11 ,x21 yl,x12 %22 ,y2,x13 x23.,vy3
real (13,23 ¢3,113,123,13

real x1f x2f yf

open(7,fi1le="output’' ,status='unknown’)

C~===-=-= this portion 1nteractively gets the starting point.
print #, 'Input the starting point. This should’
print *, 'be your best guess of the optimum.’
print %, 'Enter the xl1 coordinate.’
read * x10
print *, 'Enter the x2 coordinate.’

read # x20
call SIM (x10 ,%x20.y0Q)

print #, 'The value for y0 1s’',vy0,"' . '
<20 write (7, #) 'point 0= ,x10,x20,y0
Y] print *, "Around this 1nitial pointi(xl0.x20) a
factorial'’
print #*, 'design 1s accomplished to get the
print *, 'gradient (direction of ascent! .’
c------ this subroutine calculates the first gradient.
call TWOK (x10,x20,y0,bl . b2}
oo ---- this 1f statement 1s for flat surface

1f ((bl.eq.0).and. (b2.eq.0)) then
g0 to 1000

end 1f

print *=, 'glope in xl direction i1s' bl
print =, 'slope in x2 direction 15’ b2
write!7 %) ‘'elope in xl! direction 18’ bl
write!(7 %) ’'glope 1n x2 direction 18’ b2
print #, "Enter 1) to £0 | unit step’
print #, 'Enter 2) to do a line search’
read *,

vf (3 .eq. [|J then

xll=x10+bl

x21=%x20+b2

call 3IM ixil ,x21.,yl>

go to 300
end if

c------*hi1s subraoutine drnes A line sear~h tor *he next

Appendix A: 4%
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print %, 'Using the gradients, a line search will be’
print *, 'accomplished to find the peak i1n this
direction’

call LINE (x10,x20,y0,bl,b2,x11,x21,y1,1)}
Cc--—---- this 1f statement 1s for lines that never peak
1f (1.eq.10) then
go to 1000

end 1f
300 print %, 'The x1l! coordinate 1s’' ,xl1l
print *, 'The x21 coordinate 1s',x2l
print *, 'The value for yl 1s’.,yl," .’
write(7,#), 'point 1 ='",x11,x21,yl
print *#, 'Do you want to do a 2-k design to '’
print *»,  'get the next gradient or use the
perpendicular’
print %, 'to the line search.’
print %, 'l) perpendicular’
print #, '2) 2-k factorial design’

read *.,g
1f(g .eq. l}then

rl=bl
bl=-b2
b2=rl
go to 25
end 1§
c------ this step gets a gradient at this location.
print *, 'Another 2-k factor:ial wiil be done’
print #, 'to find gradients from this point

call TWOK (x11,x21,y1l . bl. b2}
1f ((bl.eq.0) . and. (b2.eq.0)) then
go to 1000

end 1f

25 print %, 'slope 1n xl direction 1s’' . bl
print #, 'slope 1n x2 direction 1s'.b?
write(7, %), "the new slope for x! 1s’',bl
write(7 %), "the new slope for x2 1s'.b?

c------ this step does a line search for the next point.
print *, "A line search will be done using these’
print #, 'gradients from point 1.°
call LINE (x11,x21,yl,bl ,b2,x12 ,x22,y2.,1)

1f (1.eq.10) then
go to 1000
end 1f
print #, 'The x12 coordinate 18’ ,x12
print ». 'The x22 conordinate 18’ x22
print #, "'The value for y2 1s' .,y2,’
write(7 4) 'point 2 18’ x12,%x22,v2
Appendix A: 46
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,?: c------ the next step lets one choose between another
- - gradient/!l1ine
1 2 - c search or the shorter partan.
P~ print *, 'Do you want to do another gradient/line
> search or’
< print %, 'the partan method or both?'
- print *, 'The partan connects point 0 and 2 for the
N gradient .’
‘1 v print * ' 1) yes - gradient/line’
L print %, ' 2) yes - partan’
et print %, °~ 3) ves - compare both'
_é print %, ‘enter 1,2,0r3.°
. read * .k
o 1f (k.ne.2) ther
r Ad call TWOK x1 ,x22,y2.,bl,b2)
v print *, 'itwoxk bl=' bl
- print *, 'twok b2=',b2
- write(7,%),'twok slopes are’ ,bl,b2
j: call LINE (x12,x22,y2,bl,b2,%x13,%x23,y3,1)
e print %, 'gradient/line new point location 1s’
H’ print *, x13,%x23,y3
. write{7.%) 'grad/line point 3 18’ ,x13,x23,y3
s end 1f
o i1t (k.ne.l) then
A v call PARTAN (x10,x20,x12 ,%x22.b1 b2)
-_ print *,  ’'partan bl =’ bl
. print %, 'partan b2 =' b2
L write(7,%)  'partan slopes are’' ,bi.b2
]; print #, 'do you want to do a line search or the
b faix method?’
print *, ' 1) yes - line search’
” print *, ' 2) yes -~ faix method’
-f print %, ' 3) yes -~ compare both'
- print *, 'enter 1,2,0r3.’
- read #,1
N 1f (l.ne.1l)then
9 call FAIX
- fx10,x20,x11,x21,%x12,x22.b1,b2,f13,£23,13)
. print *, 'the FAIX method calculated’
T print *, f13,£23 ¢3
ﬂ{ write(7,#), 'faix point 3 1s’,f13,f23, 13
o,
! end 1f
1f (1l.ne.2) then 1
call LINE (x12,%x22,y2.,bl.,b2,113,123,.3,1)
print #, 'the line search found’
print #_  113,123,13
° write(7,#), 'partan/line point 3 1s',113,123,13

- Appendix A: 47




used)’
| &

used)’

point’
~
R

1000

end 1f
end 1f
print #*, 'which do you want to use?’
print ¥, 'enter | to use partan/FAIX values (1if

print #, f13,f23,.f3

print *, 'or 2 for partan/line values (1f used)’
print #*, 113,123,13

print #*, 'or 3 to use gradient/line values (1f
print %,  x13 %23 ,y3

read *,m
1f (m.eq.1l) then

x13=£13
x23=123
v3 =f3
else 1f (m.eq.2) then
x13=113
x23=123
y3 =13
end if
print *, 'The x13 cocordinate 15’ .x13
print *, 'The x23 coordinate 1s'.,x23
print *, 'The value for y3 1s',y3,6 '
write(7,#%), 'point 3 18’ ,x13,x23,y3
print #, 'which do you want to do?’
print %, ‘1) quit/exit’
print #, '2) repeat process using point 3 as initial

print #, '3} 3-k factorial desi1gn and RSM’
read #. h
1f (h .eq. 1l)then
go to 1000
else 1f (h .eq. 2) then
x10=x13
x20=x23
y0=y3
go to 200
end 1f

~all RSM (x13.,%x23,y3,x1f x2f,yf)
print #, 'the end'’

end

subroutine TWOK(x10,x20 ,y0 bl , b2)

Appendix A: 48
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integer

real x10,x20,y0,rf . xln , x2n,x1lp,.x2p

real #*yll,#ylh,*yhh,*yhl bl ,b2,b12,b0O,.norm,m
real xlf x2f,yf

rf=0.5
print *,

print x,
print »,

"Entering 2-k factorial .’

'The radius of the factorial design 18’ . rf
"Would you like to change this radius ?°

print %, ' 1) yes 2) no’

read », )

1f (3.eq.1) then

print #, 'Enter the new radius
read * rf

end 1f

xln=x10-rf
x2n=x20-rf
x1lp=x10+rf
x2p=x20+rf

call SIM(xln,x2n,®yl1l)

print =, #yll ="' #xyl]
write(7,%) xln,x2n,*yll

call SIM(xln,x2p,*ylh)
print %, '#ylh=' «ylh
write(7,%) xIln,x2p,*ylh

call SIM(xlp,x2n,*yhl)
print %, ‘#yhl =’ w%yhl
write(7,%) xlp.x2n,%xyhl

call S5IM{xlp.x2p.*yhh)
print #, '=yhh =’ »yhh
write(7 %) xlp,x2p,#*yhh

m= amaxl(*yll *ylh, 6 #yhl, K #yhh)
print %, 'm=" 'm

1f fy0.gt.m) then

print #, 'yo 138 larger’

call RSM (x10,x20,y0 x1lf x2f yt?
bl=0

b2=0

go to 70
end f

bO=(syll+eylh+eyhl+svhh) 4

bl=1

-%yll-%ylh+#yhl+*yhh) /4
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b2=(-#yll+eylh-#yhl+#yhh) /4
bl2=(#yll-%ylh-%yhl+*yhh) /4
print %, 'b0=' b0
v print ®*, 'bl=' bl
print %, 'b2=' b2
print #*,  'bl2=' bl2
write(7,#%),'b0,bl ,b2,bl2 are’
write(7,.#) ,b0,bl b2,bl2
" print %, 'note i1interaction of bl?2
1fi(bl.eq.0).and. (b2.eq.0)) then
1f (b0 .eq. yO0} then
print ¥, 'the surface i1s flat 1n this area’
print *, ‘y=' bo
'Y else 1f (y0 .gt. b0) then
print %, 'max point 1n this area 1s ' ,vyO0
else 1f (y0 .1t. bQO) then
print *, y0, 'is a minimum point 1n this area’
end 1f
print #, ’try a new starting point’
P go to 70
- end 1f
norm=((bl**2)+(b2%*%2))%*x0 .5
bl=bl/norm
b2=b2/norm
o 70 continue
return
end
\ ,
subroutine SIM(x]l x2,y)
real xl ,x2,y,w(l0} u,v
integer rep,1
rep=1l
- - print #*, 'Enter the number of repetitions of the
‘ simulation’
c print *, ‘'wanted at thig point to reduce
experimental error.’
- read ®* rep
y=0
. do 20 1=1,rep
s u=xl
vEIX2
C------ this 1s the place to nsert the simulation.
wi1)=100#(v-uns2)»e2+ 1w (]-u)ww?
‘-d
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the next line changes the problem to a minimizaticon

remove the ¢ tn column |l of line 18 to minimize
ingure the ¢ 18 1in column | of line 18 to maximize
wil)=-wi(1)

yIy+w(l)

continue

y=y/rep

print #* xl x2.y

return

end

subroutine LI

integer 1,n
real x1(0:10)
real x10,x20,

real sl,s2.s3

n=1

print =,
1=0
x1(1)=x10
x2(1)=%x20
y(1)=y0
1=1+1

xl{1)=x1(1-1)
Xx2(1y=x201-1)

sl=x1(1)
32=x2(1)
call SIM (sl
y(1)=83
print #, x]1(1
print %, x2(1
print #*_ y(1)
write (7 %) xl

"Entering

NE(x10,x20,y0,bl,b2,2z1,22,yz,1)

,X2(0:10) ,y(0:10) bl ,b2

yOo,tl,t2,¢3,c,.d.e,f zl,z2,yz

line search .’

+{((2%%1)%b]l)
+{((2%%1)%b2)

U]
[
w
O8]

)
)

(1) ,x20(1) ,y (1)

1f(y (1) .1t . y0)then

print *, 'yl

1 f
bl=-bl
b2=-b2
£3=y (1)
n=2

print =

print #, b

Q
fad
o

g 5
else 1f(n.

‘'n.eqg.l)*

it vO'

hen

bl , b2,t3 . n are’

1.,b2,t£3.n

eq.2)then
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tl=y (1)

t2=y0
c=-2.0
» print %, 'tl,t2,c are’
print #*,  tl t2,c
go to 15
end 1§
end if
-
1f( y(1) .gt. vi1-1)) then
1f (1 .eq. 10) then
print #, 'the surface has 1ncreased for 10 steps’
print *, 'in this direction. It appears to g0 to
print #*, ’'infinity for a optimal point.’
\ @ print %, 'start with a new point.
go to 80
else
go to 10
end 1f
else
v 1=1+1
x1(1)=x1(1-1) - (ble 2#%(1-2))
Xx2(1)=x2(1-1) - (b2% 2%=x(1-2))
call SIM (x1(1) ,x2(1) ,y (1))
print *, x]1 (1)
print *, x2(1)
® print #,  y (1)
write!7 %) x1(1) x201) v{1)
end 1f¢
1f (yi{1) . ge vy{1-2}V) then
tl=y(1-2)
t2=y (1)
v t3=y (1-1)
else
tl=y(1-3)
t2=y(1-2)
t3=y (1)
end :f
. print * 1,£2,t3
. c=ew(1-2)
: 15 print #, 'hello’
. d=t1-(2et2)+13
- 1f(d.eq.0)then
4=.0000001
pﬂd 1f
-3. Oncﬁb‘-t )+ (4 O#cebletl) - (ceb]atd)
f-(-3,0*c“b 1) +(4 Oecwblwt2) -1 -ub2et3)
print ’.c.d.e.f
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1f (tl .eq. y{(1)) then

zl= x1(1) - O0.5%e/d

z2= x2(1) - 0.5=f/d

else 1f (tl .eq. y(1-2)) then
zl=x1(1-2) -0.5#*e./d
z2=%x2(1-2) -0.5%f/d

else 1f (tl1 .eq. y(1-3)) then

zl= x1(1-3) - 0.5%e/d
z2= x2(1-3) - 0.5=f/d
end 1f

call SIM (z1,2z2,vz}

60 print * 2zl ,22 yz
80 continue

return

end

SUBROUTINE PARTAN (x10 .x20 x12 x22. b} w2
real x10 ,x20,x12.x22.b!l.b2Z . norm
print #, 'Entering PARTAN.'

bl= x12 - x10

b2= x22 - x20
norm = ((bl#=*2) + (b2#22))#x0_5
bl= bl 'norm

2= t2/norm

print =, 'PARTAN bl 1s'.bl
print *,  "PARTAN b2 1: ,bZ
return
end

SUBRCUTINE FAIX
X172 .,x20 %1l ,x2]1 ,x12,%x22,bl.,b2,x13,%x23,y3)

real x10,x20 ,x11,x21,x12.x22.b1.b2 , xi3,x23.,v3
real mo,rl.r2,r3,r,c,assu

print *, 'Entering FAIX.'

c------ mo 18 the slope between point 0 and point < 1n

sparce
mo=(x22-%x20)/(x12-%x10)

c----- - rl 1s the distance between point O and point |
ri=sqrt((x]1-x10)%*%2 + (x2]-x20)==2)

c------ r2 t8 the distance between point | and point 2
r2=gsqrt ((x12-x11)*e2 + (x22-x21)=x)

c------ r 18 the ratio of thege two distances
r=rl/r2

c---=--- r3 1s the distance between point O and point 2
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r3=sqrt((x22-x20) *#%#2+ (x12-x10) *x2)

print %, 'mo=',mo
print #,  ‘'rl=' rl
> print *, 'r2=' . ,r2
print #, 'r3=' r3
print %, ‘'pr=' p

’

write(7,#) ‘'rl,r2,r3,r,mo are
write(7.%) rl , r2,r3,r, mo

- c------ c 1s a parameter describing the eccentricity
c=(r#mo+l)/(r*mo-moxx?2)

c------ assu times r3 1s the assumed acceleration length
assu=(c*((c-1)*=»2 ) #mo##2)/ ((l+(c**2)emonx2) x=2)
print # ‘c=' cC
write(7.%) 'c=' ¢

<> write(7 %) ’assu='.assu
print * ‘asgu=' assu

Xx13=xl2+agsur(x12-%x10)
xXx23=x22+assu* (x22-x20)
call SIM (x13,x23,y3)

return
S end
l
- SUBROUTINE RSM (x10,x20,ymm,x1f x2f yf)
3
’-
: real x10,x20,xlp,xln,x2p,x2n,rf
’6 real *yll ylm,*ylh,yml,ymm,*ymh,*yhl vyhm,*yhh
| real b0,bl,b2,bll,b22,bl12
1 real xl1f x2f . yf
4
: rf=0.5
f print #*, 'Entering 3-k RSM.'
-«
xlp=x10+rf
Xxln=x10-rf
Xx2p=%x20+rft
Xx2n=x20-rf
X call SIM (xln,x2n,*yl1l)
write (7 #) xln, x2n,*yll
~all SIM (xln,x20,ylm)
write!(7 ®) xln ,x20 ylm
- call SIM (xln,.x2p,*ylh)
f write (7 #) xln, x2p . *ylh
3
[ call SIM (x10,x2n.vml)
i write(7 #) x10,x2n,yml
2
P . write!(7 #) x10,%x20,ymm
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call SIM (x10,x2p,*ymh)
write(7,#%) x10,x2p,*ymh

call SIM (xlp,x2n,#*yhl)
write(7 %) xlp . x2n,%yhl

call SIM (xlp,x20,yhm)
write(7 %) xlp,x20,yhm

call SIM (xlp,x2p.*yhh)
write(7,%) xlp,.x2p,*yhh

30 00=(*yll+ylm+oylh+yml+ymm+xymh+#*yhl+yhm+*yhh) /9

bl=(#yhl+yhm+%#yhh-%yll-ylm-%*ylh)/6.0
b2=(#ylh+*ymh+*yhh-#yll-yml-*yhl)/6.0
bll=(#yll+ylm+*#ylh+*yhl+yhm+#*yhh-

2# (yml+ymm+#ymh)) /6.0
b22=(#yll+yml+*yhl+*ylh+*xymh+#*yhh-

2x (ylm+ymm+yhm)) /6.0
bl2=(#yll+%¥yhh-*ylh-#yhl)/4.0

print *, 'b0 =’ ,b0
print %, ‘bl =’ bl
print *, 'b2 =’ b2
print #*, 'bll ="' ,bll
print #, 'b22 =' ,b22
print *, 'bl2 =' blZ

write(7,#) 'b0O,bl,b2,bll,b22,bl2 =’
write(7,#) bO,bi,b2,bll,b22,bi2

x2f=x20 + ((-bl*bl2)+(2%bll1#b2))/((bl2xbl2)-
(4#bll#b22))

x1f=x10 + ((-b2#bl2)+(2xbll*bl))/((bl2*bl2) -
(4xbl1xb22))

call SIM (xl1f x2f,yf)
print %, xlf x2f yf
write(7,%), "the final point 18’ xIf =x2f yf

1f (4#bll*b22 .1lt. bl12#bl2) then

print *, "(xlf ,x2f) 1s a saddle point.'
write(7,#%) '(xlf x2f) 18 a zaddle point.’
else 1f( (bll.1t.0) .and. (b22.1t.0))then
print #, '(x1f ,x2f) 1s a maximum point. '
write(7,#) '"(xlf,x2f) 1s a maximum point.’
else 1f( (bll.gt.0) .and.(b22.gt.0))then
print *, '(x1f ,x2f) 18 a minimum point. .’
write(7 #) '(xlf x2f) 1S a minimum point. '

end 1f

return

end
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Prcgram Resulits

Probliem: y=10-5(x1-3)%#2 -15(x2+7)xs2
point 0= 10.00000 10.00000 -4570 . 209
9.500000 9.500000 -4285%5.000
9.500000 10.50000 -4795.000
10.50000 9.500000 -4355.000
10.50000 10.50000 -4865.000
b0 ,bl1,b2,bl2 are
-4575.000 -35.00000 -255.0000 OLONCCCTOGE LD
slope 1n x! direction 1s -0.1359800
slope 1n %x2 direction 1s -0.9907116
point 1 = 9.864020 9.009289 -4070.034
the new slope for x! 1s 0.9907116
the new slope for x2 1s -0.1359800
11.84544 8.737329 -4096.162
7.882597 9.281249 -4085 . 385
point 2 1s 9.606606 9.044616 -4069 682
partan slopes are -0.3807506 -0.9246778
ri,r2,r3 ., r ., mo are
0.9999996 0.2598276 1.033208 7 .848704
2.428566
c= 3.000038
assu= 2.4198353E-02
faix point 3 1s 9.597086 9.021497 -4057.933
8.845104 7.195260 -3183.407
7322102 3.496549 -1736 066
4. 276097 -3.900873 -142.21009
-1.815912 -18.69%572 -21587 . 813
1.230093 -11.29830 -282 7932
partan/line point 3 1s 2.9939984 -6.999997
10 .00000
point 3 1s 2.999984 -6.999997 10 00600
2.499984 -7.499997 4.999965
2.499984 -6.999997 8.7499272
2.499984 -6.499997 4.9839879
2.999984 -7.499997 £.250043
2.999984 -6.999997 10.0C000
2.999984 -6.499997 5.249957
3.499984 -7.499997 5.000122
3.499684 -6.999997 8 750079
3.499984 -6.499997 5.000036
bO.bl.,b2,bll ,b22,b12 =
£.666667 7.8837974E-0%5 -4 . 29157344E-0% -l Isoo0n
-3.750000
O.0D0000000E+00D
the final point is 2.9993995 -7.000003 10 Qo000
(x1f x2f) 13 a maximum point .
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Problem: v = 100(x2 - x1='< « (1 - xl:-~=
point 0= 5.000000 5.000000 o SRR SIS
4.500000 4.500000 -24818.50
4.500000 5.500000 -21768.5¢C
5.500000 4.500000 -66326 .50
5.500000 5.500000 -61276 .50
bC.bl,b2.bl2 are
-43547 .50 -2025%4 . 00G 2025.000 SLRRANESR R
slope 1n x!1 direction 1s -0.995039.
slope 1n x2 direction 1s 9.9484265E-02
3.0068922 5.198968 -1494.510
-0.9702346 5.596006 -2171.297
1.019844 5.397937 -1899.092
point 1 = 2.035566 5.296385 -123.3737
the new slope for x1 1s -9.9484265E-02
the new slope for x2 1s -0.9950391
1.836598 3.306307 -1.14%9183
1.438661 -0.6738498 -752.9236
1.637629 1.316228 -186.8933
point 2 1s 1.853121 3.471574 -0.8685583
partan slopes are -0.8995146 -0.4368905
ri.r2,r3 ., r . mo are
2.979213 1.8339098 3.498418 L 624516
0.4856958
o= 3.234417
agsu= 0.3167595
faix point 3 1s 0.8563176 2.987431 -508 1403
point 3 1s 0.8%563176 2.987431 -508.14072
pornt 0= 0.8563176 2.987431 -508.140C73
0.3563176 2.487431 -557.5954
0.3563176 3.487431 -1129.689
1.356318 2.487431) -42.09572
1.356318 3.487431 -271.6623
bO.bl,b2.bl2 are
-500.2607 343.3817 -200.41951 85 .83177
slope 1n xl1 direction 1s 0.8636594
slope 1n x2 direction 1s -0.5040758
2.593637 1.979279 -2207.654
-0.8710013 3.995582 -1051.278
powint 1 = 0.4109897 3.247347 -948 .0226
the new s3lope for xl 18 -0.5040758
the new slope for x2 1s -0.8636594
-0.5971618 1.520028 -137.3068
'! -2.613465 -1.934610 -7695.244
-1.605313 -0.2072911 -782.0326
point 2 is -0.6546982 1.421448 -101.3068
partan slopes are -0.6943644 -0.7196236
rl,r2,r3.r.,mo are
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0.5156290 2.114142 2.176114 0.247~2 %

036377
o= -1.5285327
assu= -0.8533999
fal1x point 3 1s 0.6348025 2.757858 -554 £810
point 3 1s 02.63480125 2.757858 -554 .6810
point Q0= 0.€6348025% 2.757858 -554 AR10
0.6148025 2.737858 -557.0496

0.6148025 2.777858 -576.0886

0.6548025 2.737858 -533.3094

0.65480125 2.777858 -551.6421
bO,bl,b2.bl2 are

-554.5975 11.97165 -9.417908 0. 1018828

slope 1n x1 direction 1s 0.7859479
slope 1n x2 direction 1s -0.6182927

2.206698 1.521272 -1122.531
-0.9370932 3.994443 -974.8847
potnt 1 = 0.5173576 2.85028%0 -AET 2108
the new slope for xl 13 -0.5182927

~he new =zlope for xz 12 -0.78%59479

-0.7192279 1 2783254 -H0 BTTTY

-3.192399 -1.865437 -14554 .33

-1.955%5813 -0.2935417 -170%. 145
point 2 12 -0.4340829 1.640818 -213 . 0004
partan slopes are -0.6813621 -0.7225083

-1.816807 0.18958017 -972.0287

0.9486414 3.085835 -477.8248
partan/line powint 3 1s -0.1003690 1.98B9566 -
93.0498
point 3 1s -0.15032690 1.98Q566 -393 04GR
point 0= -0.1003690 1.989566 -393.0498
-0.11C03690 1.979566 -388.2933

-0.1103690 1.8999566 -396.2028
-9.0369038E-02 1.979566 -389.8306
-9.0369038BE-02 1.999566 -397.7562
5E0.,bl . b2.b12 are

-393.0207 -0.7726593 -3.958778 -4 . 0206GI3E-23
slope 1n x1 direction 18 -0.1915617
slope 1n x2 direction 1s -0.9814806

-0.4834923 2.6605010E-02 -6.492270

-1 249739 -3.899318 -2987 .493

-0.8666157 -1.936356 -725.6849

point 1 = -0.425866% 0.3218570 -4 NNRQ3TA
the new slope for xl 1s 0.3814806

the new slope for x2 1s -0.1915617

1.537095%5 -6.1266333E-02 -587.8308

-2.388827 0. 704398073 -2513.0G60
point 2 13 O 1B50708 0.2026166 -3 4981302
partan 3lopes are 0 1577361 -0 9874813

5 5005449 -1 172346 -409 . 4576

-G. 1304014 2177579 -468 0861
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partan/line point 3 1s 0.1!9560938 0.1361127 -
1.603718
point 3 1s 0.1956938 0.1361127 -1.607%718
-0.3043062 -0.3638873 -22.53949

-0.3043062 0.1361127 -1.8906530

-0.3043062 0.6361127 -31.24187

0.1956938 0.3638873 -16.82205

0.195€938 0.1361127 -1.603718

0.1956638 0.6361127 -36.38538

©.6956938 -0.3638873 -71.98218

©.6956938 0.1361127 -12.1944586

0.6956938 0.6361127 -2.406738
bO.bl.,b2 . bll b22 bl2 =

-21.86624 -5 151564 €.885005 -5.425774
-25.000600

19.56028
the final point 1s 0.6847318 -2.5018585RE-02 -24 4507k

tx1lf . x2f)

Appendi1x B:

1S a maxlimum point.
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iur1es <conzi1sted of research pilot., 1nstructor pirlot fopr ET-

139 aircraftr

and Chief, Wing Training branch until entering

~f Engineering, Air Force Institute of Technoclosgy
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